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Abstract

Electric power system operators make critical decisions based on remote measure-

ments. If those measurements are compromised, it is possible to make decisions that

could lead to critical consequences. Of particular concern are unobservable attacks

in which compromised measurements are not flagged as erroneous by bad data detec-

tion algorithms. The use of secure measurement devices, such as PMUs, is one way

to recognize such attacks. In this paper we present an algorithm based on integer

programming for optimal placement of PMUs to detect unobservable smart grid data

integrity attacks. Alternatively, this algorithm can be used to identify small sets of

existing PMUs whose data is needed to detect unobservable bad data attacks. We show

that the algorithm is efficient on practical examples drawn from the power engineering

literature.

1 Introduction

In the modern world, societies and economies are increasingly dependent on the services

(electric power, natural gas, water), etc. that infrastructure systems provide. These sys-
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tems are highly complex and are governed by highly non-linear physics relationships. This

complexity makes such systems very difficult to control and operate. Despite this complex-

ity, considerable progress was made in recent years to improve the processes that are used

to operate infrastructure systems. The smart grid initiatives are an example of such ad-

vances [1, 2]. These control processes are highly dependent on accurate system state data

that is remotely measured and transmitted to control systems via advanced supervisory con-

trol and data acquisition (SCADA) systems. Transmission of this data represents a point of

vulnerability of the system to cyber attackers.

In this paper we focus on SCADA systems for electric power. Currently, SCADA devices

in power systems measure system state quantities such as power injections at substations

(buses), power flows at lines and transformers, voltage values (magnitudes), etc. Histori-

cally, such data is measured and transmitted with the expectation that there is noise and

error in the measurements and that it does not provide enough information (for example,

voltage phase angles) to completely characterize the state of a system. As a result, the

power engineering community has developed sophisticated techniques to estimate the state

of unobserved portions of the system and filter bad data [3]. These techniques are robust to

random failures and expected measurement errors in power systems. However, increasingly,

there is concern that it is possible to introduce errors into the data in a coordinated fashion

that is undetectable by bad data filters [4]. When such error is introduced by a malicious

source (such as a cyber attacker), this error is referred to as a data integrity attack. When

attacked data is provably able to bypass bad data filters, such attacks are referred to as

unobservable data integrity attacks [4]. In general, unobservable attacks require the compro-

mise of large numbers of sensors and much recent work has focused on developing general

methods to identify worst case sets of sensors based on constraints on how many sensors may

be comprised [4, 5, 6, 7]. While such models are important for assessing the vulnerability of

a system, they suffer computationally as the models tends to be very difficult to solve.

A subset of unobservable data integrity attacks are those that only require a small number
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of compromised sensors. It can be argued that such attacks are the most realistic as an

attacker has limited resources (e.g., time and information) to plan an attack. This makes

attacks that consist of a small number of sensors desirable. These types of attacks are

referred to as k-sparse attacks, where k is the number of sensors that are compromised [4, 5].

Recent papers have show that identifying all possible 3, 4, and 5 sparse attacks requires

polynomial time [5], eliminating the computational challenges associated with more general

models. More importantly, perhaps, [5] identifies the types of redundant measurements that

are required to make unobservable k-sparse attacks detectable. One important measurement

(there are other possible measurements that could be used, such as frequency, line flows, etc.)

for detecting k-sparse attacks is voltage phase angles. Voltage phase angles are typically

estimated from other measurements. Since Phasor Measurement Units (PMUs) directly

provide these measurements, they are candidate devices for detecting unobservable attacks

[8]. In this paper we develop optimization models for optimally placing PMUs to cover

undetectable attacks. Alternatively, in the case where PMU deployment is ubiquitous, the

optimization models are used to identify the smallest set of PMUs that are needed for use

in detecting attacks.

Literature Review The PMU placement problem is generally an NP-Complete problem,

and, as discussed in [5], our placement problem is no different. However, there is limited

work on optimizing the placement of PMUs to combat k−sparse attacks. Reference [5]

optimizes the placement of PMUs using a polynomial time algorithm that is guaranteed to

find a sufficient number of PMUs, but is not guaranteed to find the optimal solution. In this

paper, we describe a model that is guaranteed to find the optimal solution. In the worst

case, this algorithm requires exponential computational time, but is efficient in practice when

tested on a wide range of problems.

More generally, there are a number of interesting papers that address similar PMU place-

ment problems. These papers include determining the optimal placement of PMUs in order

to improve system observability [9, 10, 11, 12, 13]. There is also work that maximizes the
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amount of mutual information between PMU measurements and the power system states [14].

Multi-objective criteria (observability, cost, importance and security) are considered in [15].

In references [14, 16, 17], the PMU placement problem is posed in terms of improving state

estimation. Interested readers are invited to use reference [18] to see a comprehensive review

of different types of PMU allocation problems.

The main contributions of this paper are as follows:

• A mixed integer program for determining the minimal number of PMUs required to

defend against an arbitrary set of unobservable attacks.

• Models for placing or selecting PMUs to detect k-sparse attacks that are based on

PMU capabilities. This paper includes a comparison on the relative merits of each

capability, in terms of how many PMUs are required to detect attacks.

• Empirical studies on realistic systems that provide evidence the approach is tractable

in practice.

The remainder of this paper is organized as follows: Section 2 summarizes the previous

work on smart grid unobservable attacks. Section 3 introduces how PMUs are used for

countermeasures against such attacks. Section 4 describes the mixed integer programming

models used for optimal PMU placement or selection. Section 5 discusses experimental

results based on simulation on IEEE test cases. The paper ends with a section on conclusions.

2 Unobservable Smart Grid Data Integrity Attacks

Electric power systems are potentially vulnerable to a large number of unobservable data

integrity attacks. Data integrity attacks are defined as attacks that modify data that is

measured at remote locations (i.e., meters and sensors) at sensing or during its transmission

to other locations (i.e., control centers). Data integrity attacks that are consistent with power

flow physics and uncompromised data are called unobservable [4]. Unobservable attacks
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require coordination–compromised meter readings must be carefully orchestrated to fall on

a low dimensional manifold in order for the attack to be unobservable. Since the attacks are

not observable, it is possible for such attacks to cause significant errors in applications like

state estimation. References [4, 5] provide a formal definition of unobservable attacks. As

comprising a large number of sensors is a difficult task, we focus on attacks that compromise

a modest number of meters as discussed in [5]. It describes efficient algorithms to find all

unobservable attacks involving the compromise of exactly two power injection meters and an

arbitrary number of power meters on lines. In this paper, we use this approach to enumerate

sparse attacks. We then optimize PMU resources based on this set of attacks.

One of the interesting attributes of unobservable attacks is that they partition a power

network into observable islands. These are disjoint subsets of buses which share the same

perceived change of state under attack [5]. Figure 1 shows an example of how an attack

partitions a network into islands. Conceptually, this means phase angles shift by the same

quantity within each island. If there is a PMU in an island, it can detect if a shift is due

to the normal behavior of the system or is only a perceived shift due to an attack. Thus,

PMUs render the attack observable. As will be discussed later, during an attack, at most

one island will exhibit no shift.

3 PMU Allocation/Selection for Attack Detection

In alternating current (AC) power systems, the basic physics of power flows force power

to flow from high voltage phase angles to low voltage phase angles. The amount of flow

is proportional to the phase angle difference between the source and the sink. Irrespective

of flows, the differences in phase angles is important because large deviations cause system

instability. While state estimation estimates phase angles on slow time scales (5 minutes

or more), instability can occur on much more rapid time scales. Thus, one of the original

motivations for developing and deploying PMUs was to directly measure phase angles on
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fast times scales to provide early warning of a system drifting towards instability.

In this paper, we take advantage of the PMU’s capability to directly measure phase angles

and line flows to counter unobservable attacks. While there are vulnerability concerns related

to PMUs [19, 20], in this paper we assume they are secure [21] as they are engineered for

security, use the modern NASPInet infrastructure, and are more secure than older SCADA

controls. There are at least two ways a PMU can counter an unobservable attack. First, as

discussed earlier, an attack partitions a power network into observable islands (e.g. Figure 1).

Theorem 16 in [5] states that two PMUs placed in two distinct observable islands are sufficient

to thwart the attack. Thus, for detecting a set of attacks it is sufficient to place PMUs

such that, for each attack, two different islands are covered. Reference [5] has shown that,

when using this method, p+ 1 PMUs are sufficient to thwart a collection of p unobservable

attacks. In this paper we show that significantly fewer are required. Second, since PMUs

also measure line flows, if a PMU is placed at a bus that is connected to a line that crosses

island boundaries, it can implicitly measure phase angles in both islands to detect a shift.

Given the PMU’s capabilities and limited PMU resources, there are three distinct steps

required to quantitatively prioritize countermeasure investments. First, we must identify all

sets of devices that can be used to conduct unobservable attacks. Here we use [5] to enu-

merate (in polynomial time) all possible data integrity attacks consisting of 3, 4, 5 sensors.

Second, we must assess the risk to the system from the attacks. Here, we focus on conse-

quence using the techniques of [22] that calculate economic consequence. It is important

to note that our approach is general and can use any method for calculating consequence,

including system damage–we use economics for the purpose of demonstrating the approach.

Third, we must identify the minimum set of PMUs to cover all the attacks, or with limited

resources, the placement of PMUs to cover the more critical attacks to minimize consequence.

If PMUs are being deployed this approach gives a security criteria for their allocation. If

PMU deployment is ubiquitous, but data processing resources are limited, then this approach

prioritizes which PMU data streams are used.
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PMU

PMU

Figure 1: An example of a four sparse attack on the IEEE 300 electric power system. For
space constraints, the green rectangles group 265 and 18 buses, respectively. The grid is
divided into three islands by the attack (red squares). Two PMUs in two different islands
are sufficient as a countermeasure to the attack (for example, buses 9026 and 9052).

4 Optimization Models

In this section we develop mixed integer programming models for determining the optimal

PMU placement for covering k-sparse attacks. The first set of models minimizes the cost of

uncovered attacks when PMU resources are limited (Section 4.1). The second set of models

minimizes the total number of PMUs required to cover all attacks (Section 4.2).

4.1 Minimizing Cost

Formally, for an attack a ∈ A, the notation ηa is used to denote the cost or consequence of

the attack if it is undetected. In this paper, the work of [22] is used to compute ηa. The set

Āa is then the set of buses adjacent to lines included in the attack. We then introduce the
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variable xa that is set to 0 when attack a is covered and 1 otherwise. Similarly, for a bus

n ∈ N , the variable pn is used to determine if a PMU is placed at n (it is set to 1 if there

is a PMU at n, and 0 otherwise). Next, the term Ia is used to denote the set of islands for

a. Ia consists of sets of buses such that
⋃

i∈Ia V (i) = N and
⋂

i∈Ia V (i) = ∅, where V (i) is

the set of buses in island i. The variable yia is then used to denote whether or not island i of

attack a is covered by PMUs.

In order to assess the relative value of PMU capabilities for unobservable attack detection,

we isolate each of the capabilities in our optimization models.

4.1.1 Phase Angle Shift Detection (PASD)

In our first optimization model, we assume that the only capability for detecting an attack

is through the direct detection of phase angle shift. This is achieved by placing a PMU at

buses in at least two different islands defined by the attack. In this model, the goal is to place

PMUs at buses such that sum of the consequence of uncovered attacks is minimized. The

model is formally presented in Figure 2. Equation (1) describes the objective–minimizing

the cost of the attacks that are not covered. Constraint (2) states that the number of PMUs

is limited by P . Constraint (3) assures that an attack is covered by placing two PMUs in two

different islands. In the case that only one island contains a PMU the attack is not covered

because of Constraint (5). Constraint (4) associates an island with the PMUs at buses in

that island. The right hand side counts how many buses in the island have PMUs. If there

is at least 1, then yia may be set to 1.

4.1.2 Flow Based Shift Detection (FBSD)

In our second optimization model, we assume that PMUs measure also line flow. The PMUs

directly measure the phase angle at its bus and the indirectly measures the phase angle at

the connected bus using the line flow measurement. The model is formally presented in

Figure 3.
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minimize
∑
a∈A

ηaxa (1)

subject to
∑
n∈N

pn ≤ P (2)

(1− xa) ≤
1

2

∑
i∈Ia

yia ∀a ∈ A (3)

yia ≤
∑
n∈Ia

pn ∀a ∈ A, ∀i ∈ Ia (4)

y, p, x ∈ {0, 1} (5)

Figure 2: The mixed integer programming model for minimizing the cost of uncovered attacks
for the PASD model.

minimize
∑
a∈A

ηaxa (6)

subject to
∑
n∈N

pn ≤ P (7)

(1− xa) ≤
∑
n∈Āa

pn ∀a ∈ A (8)

p, x ∈ {0, 1} (9)

Figure 3: The mixed integer programming model for minimizing the cost of uncovered attacks
for the FBSD model.

This model drops the island constraint (Constraint 4) and replaces the phase shift de-

tection constraint (Constraint 3) with Constraint 8. Constraint 8 states that an attack is

covered if one the buses adjacent to a line connecting islands has a PMU.

4.1.3 Phase Angle Shift and Line Flow Detection (PASLFD)

In our third optimization model, we assume that both attack detection capabilities are

available. The model is formally presented in Figure 4. In this model Constraint 3 and

Constraint 8 are combined so that an attack is covered if either one is satisfied (see Constraint

12).
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minimize
∑
a∈A

ηaxa (10)

subject to
∑
n∈N

pn ≤ P (11)

(1− xa) ≤
1

2

∑
i∈Ia

yia +
∑
n∈Āa

pn ∀a ∈ A (12)

yia ≤
∑
n∈Ia

pn ∀a ∈ A, ∀i ∈ Ia (13)

y, p, x ∈ {0, 1} (14)

Figure 4: The mixed integer programming model for minimizing the cost of uncovered attacks
for the PASLFD model.

4.2 Minimizing the Number of PMUs

These optimization models are easily modified to identify the minimal set of PMUs needed

to fully cover all the attacks. This is the problem originally posed by [5] and was not solved

to global optimality (until now). The models are modified by removing the maximum PMU

constraint (i.e., Constraint 2), replacing the x variables with the constant 0, and replacing

the objective function with

minimize
∑
n∈N

pn (15)

5 Experimental Results

In this section we discuss our experimental results and demonstrate that our approach is

computationally tractable on a wide variety of systems. We first present results where the

objective is Equation (15), i.e. the goal is to minimize the total number of PMUs required

to cover all attacks. Second, we present results where the objective is Equation (1), i.e. the

goal is to minimize the cost of uncovered attacks when the number of PMUs is limited.
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5.1 Minimizing PMUs

In this section we compute the minimum number of PMUs that are needed to detect all 3,

4, and 5 sparse data integrity attacks on IEEE test problems. We compare these results

with the upper bound provided in Theorem 16 of [5] and show that in practice (for the

IEEE networks) it is empirically computationally tractable to calculate the optimal set. The

results are shown in Table 1. The first column labels the IEEE network under consideration.

The second column lists the upper bound on the number of PMUs from [5]. This is p + 1

where p is the number of unobservable attacks. The following three sets of columns list the

minimum number of PMUs for PASD, FBSD, and PASLFD and the CPU seconds needed

to solve each problem. The problems were solved on a desktop computer with an Intel Xeon

2.67 Ghz processor using Cplex 12.5.

For these problems, it is clear that the phase shift detection capabilities clearly dominate

the line flow detection capabilities of PMUs. Only when there is one possible attack in a

system, does FBSD provide better results. Otherwise, FBSD does not increase the capability

of PASD to cover all attacks. Intuitively this means that there is limited overlap of attack

detection in FBSD, whereas there is a great deal of overlap in PASD. This allows PASD to

overcome the limitations of needing two instead one PMU to cover an attack. These results

also clearly improved the results of [5].

5.2 Minimizing Consequence

In this section we present results on IEEE-118, IEEE-300, RTS-96, and the polish grid (2383

buses, winter peak) included with the Matpower distribution [23] when PMU resources are

limited. The approach of [22] is used to compute attack consequence. Note that some attacks

are eliminated by [22] because they involve buses with no injection, rendering them useless

for data integrity attacks that modify injection. In the IEEE Reliability Test System, RTS-

96 (73 bus system), there are two 3-sparse attacks ([207, 208], [307, 308]) and no others.
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PASD FBSD PASLFD

IEEE Test Cases [5] MIP CPU Time MIP CPU Time MIP CPU Time

RTS-79 2 2 < 0.001 1 < 0.001 1 < 0.001
30 5 2 < 0.001 3 0.06 2 0.04
39 13 4 < 0.001 7 < 0.001 4 < 0.001
57 2 2 0.03 1 < 0.001 1 < 0.001

RTS-96 3 2 < 0.001 2 < 0.001 2 0.03
118 9 5 < 0.001 6 0.02 5 0.01
300 142 55 0.1 63 0.01 55 4.4

2383wp 576 233 1.12 310 7.67 233 13.3
2736sp 194 136 0.34 152 0.3 136 0.35
3012wp 588 254 0.49 344 0.6 254 15.33

Table 1: This table presents the optimal number of PMUs required to detect all 3, 4, 5
sparse data integrity attacks for PASD, FBSD, and PASLFD as compared to the heuristic
of [5]. Computation times are also reported in CPU seconds.

The consequence cost of both attacks is 45. Table 2 describes the cost of uncovered attacks

for different PMU levels when using PASD. No attacks are covered with one PMU and all

attacks are covered when 2 are available. For FBSD and PASLFD one attack of cost 45 is

covered with one PMU and the rest of the results remain the same. Similarly, there are five

3-sparse attacks, three 4-sparse attacks and no 5 sparse attacks for IEEE 118. Two attacks

have non-zero consequence. An attack on buses 85 and 86, and the line between them has

cost 12253. An attack on buses 12 and 117, and the line between has cost 23410. Table 3

describes the cost of uncovered attacks for different PMU levels using PASD. No attacks are

covered with one PMU and all attacks are covered when 2 PMUs are available. For FBSD

and PASLFD one attack of cost 23410 is covered with one PMU and the rest of the results

remain the same.

Due to space limitations, for both IEEE 300 and the polish grid case, the number of

sparse attacks is too large to list in tables in this manuscript. Overall, there are 32 3-sparse

attacks, 47 4 sparse attacks and 26 5 sparse attacks in IEEE 300 (for a total of 105 attacks).
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Available PMUs Covered attacks Cost uncovered attacks CPU Time

1 0 90 0.04
2 2 0 0.02
3 2 0 0.02

Table 2: IEEE RTS 96 Test Case. Cost of uncovered attacks in case of limited resources.

Available PMUs Covered attacks Cost uncovered attacks CPU Time

1 0 35663 0.05
2 2 0 0.03
3 2 0 0.03

Table 3: IEEE 118 Test Case. Cost of uncovered attacks in case of limited resources.

In the 2383 polish grid, winter peak network there are 269 3-sparse attacks, 206 4-sparse

attacks, and 91 5-sparse attacks (for a total of 566 attacks).

Figure 5 shows the cost of undetected attacks as function of the number of PMUs that

can be placed for the IEEE 300 problem. Figure 6 presents results for the IEEE 2383wp test

case for PASD, FBSD, and PASLFD. The large initial drop in Figure 6 is due to the fact

that only a few attacks have major consequences. Most of the attacks have small effect or no

effect at all. In both cases, the PASD capability of PMUS dominates FBSD except when one

PMU is available. However, unlike the minimum PMU results, the combined capabilities of

PASLFD sometimes provide some marginal benefit.

6 Conclusions

Recent years have seen increased interest in understanding the vulnerabilities of electric

power grids to cyber attacks. Indeed, recent work by [4, 5, 6, 7] and others has shown that it

is possible for an attacker to falsify information sent to the grid operator so that the incorrect

information remains consistent with other measurements reported to the operator. In this

paper we developed a mixed integer programming model that is used for optimal deployment

of PMUs and for optimal selection of existing PMUs to mitigate sparse unobservable attacks.
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Figure 5: This graph compares the results of PASD, FBSD, and PASLFD on the IEEE 300
problem. The goal is to minimize the cost of uncovered attacks (y axis–log scale) when the
number of PMUs is limited (x axis).

We have shown that despite the NP-Completeness of the problem, in practice this problem

can be solved efficiently for a wide variety of problems.

There are a number of future questions that remain to be answered. First, other types

of data integrity attacks need to be considered, including the on/off status of a power lines

(either from direct measurements or state estimation [24, 25, 26]), the output of generators,

the states of control devices, etc. PMUs could be used to counter such attacks and PMU
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Figure 6: This graph compares the results of PASD, FBSD, and PASLFD on the IEEE
Polish 2383 winter peak problem. The goal is to minimize the cost of uncovered attacks (y
axis–log scale) when the number of PMUs is limited (x axis).

resource allocation should include mitigating these attacks. Second, it will be important to

develop multi-objective PMU placement models that include k-sparse security considerations

along with existing considerations such as overall improved state estimation. Finally, it will

be interesting to test the approach on larger scale problems (10,000 nodes or more), as this

is the size of problems at the interconnection level in the United States.
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